Перевод: с русского на английский

с английского на русский

снижение функции

  • 1 снижение функции

    Russian-english psychology dictionary > снижение функции

  • 2 снижение функции

    Русско-английский медицинский словарь > снижение функции

  • 3 снижение функции

    Универсальный русско-английский словарь > снижение функции

  • 4 снижение функции почек

    Универсальный русско-английский словарь > снижение функции почек

  • 5 снижение функции почек почечная недостаточность

    Medicine: nephratonia

    Универсальный русско-английский словарь > снижение функции почек почечная недостаточность

  • 6 снижение функции щитовидной железы

    1) Agriculture: hypothyrosis
    2) Makarov: hypothyroidism

    Универсальный русско-английский словарь > снижение функции щитовидной железы

  • 7 снижение

    1. cut
    2. degression
    3. depreciation
    4. down-drift
    5. downdrift
    6. setback
    7. shortcomings
    8. slide
    9. wane
    10. declining
    11. drop
    12. dropping
    13. subsiding
    14. abatement
    15. abatements
    16. come down

    снижающий; снижениеbringing down

    снижающийся; снижениеcoming down

    17. cutback
    18. cuts
    19. cutting

    снижать инфляцию; снижение инфляцииcutting inflation

    20. diminusion
    21. easing
    22. minimizing
    23. sag
    24. slowdown
    25. slowdowns
    26. slowing
    27. lowering; reduction; decrease; fall; landing
    28. decline
    29. depression
    30. descent
    31. reduction
    Синонимический ряд:
    понижение (сущ.) понижение; уменьшение
    Антонимический ряд:

    Русско-английский большой базовый словарь > снижение

  • 8 снижение

    Russian-english psychology dictionary > снижение

  • 9 снижение

    owering, deterioration ( о качестве), reduction, decrease, fall
    снижение функции depression of function

    Russian-english stomatological dctionary > снижение

  • 10 нелинейное программирование

    1. nonlinear programming

     

    нелинейное программирование
    Раздел математического программирования, изучающий методы решения экстремальных задач с нелинейной целевой функцией и (или) областью допустимых решений, определенной нелинейными ограничениями. В экономике это соответствует тому, что результаты (эффективность) возрастают или убывают непропорционально изменению масштабов использования ресурсов (или, что то же самое, масштабов производства) - например, из-за деления издержек производства на предприятиях на переменные и условно-постоянные, из-за насыщения спроса на товары, когда каждую следующую единицу продать труднее, чем предыдущую, из-за влияния экстерналий (см.Внешняя экономия, внешние издержки) и т.д. В краткой форме задачу Н.п. можно записать так: F (x) ? max при условиях g (x) ? b, x ? 0. где x — вектор искомых переменных, F (x) — целевая функция, g (x) — функция ограничений (непрерывно дифференцируемая), b — вектор констант ограничений (выбор знака ? в первом условии здесь произволен, его всегда можно изменить на обратный). Решение задачи нелинейного программирования (глобальный максимум или минимум) может принадлежать либо границе, либо внутренней части допустимого множества. Иначе говоря, задача состоит в выборе таких неотрицательных значений переменных, подчиненных системе ограничений в форме неравенств, при которых достигается максимум (или минимум) данной функции. При этом не оговаривается форма ни целевой функции, ни неравенств. Могут быть разные случаи: целевая функция — нелинейна, а ограничения — линейны; целевая функция — линейна, а ограничения (хотя бы одно из них) - нелинейны; и целевая функция, и ограничения нелинейны. Задачи, в которых число переменных и (или) число ограничений бесконечно, называются задачами бесконечномерного Н.п.. Задачи, в которых целевая функция и (или) функции ограничений содержат случайные элементы, называются задачами стохастического Н.п. Например, задачу для двух переменных (выпуск продукта x и выпуск продукта y) и вогнутой целевой функции (прибыль — p) можно геометрически представить на чертеже (см. рис. H.4; заштрихована область допустимых решений). Эта задача реалистично отражает распространенное в экономике явление: рост прибыли с ростом производства до определенного (оптимального) уровня в точке B’, а затем ее снижение, например, вследствие затоваривания продукцией или исчерпания наиболее эффективных ресурсов. Нелинейные задачи сложны, часто их упрощают тем, что приводят к линейным. Для этого условно принимают, что на том или ином участке целевая функция возрастает или убывает пропорционально изменению независимых переменных. Такой подход называется методом кусочно-линейных приближений, он применим, однако, лишь к некоторым видам нелинейных задач. Нелинейные задачи в определенных условиях решаются с помощью функции Лагранжа (см. Множители Лагранжа, Лагранжиан): найдя ее седловую точку, тем самым находят и решение задачи. Среди вычислительных алгоритмов Н.п. большое место занимают градиентные методы. Универсального же метода для нелинейных задач нет, и, по-видимому, может не быть, поскольку они чрезвычайно разнообразны. Особенно трудно решаются многоэкстремальные задачи. Для некоторых типов задач выпуклого программирования (вид нелинейного) разработаны эффективные численные методы оптимизации Рис. Н.4 Нелинейное программирование (заштрихована область допустимых решений)
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > нелинейное программирование

  • 11 нерациональный метод ограничения выбросов вредных веществ

    1. mass
    2. HTCART

    2.1.32 нерациональный метод ограничения выбросов вредных веществ: Любой метод или способ, который при эксплуатации ТС в нормальных условиях уменьшает эффективность системы ограничения выбросов вредных веществ до уровня ниже предполагаемого при использовании предписанных методов определения концентрации выбросов вредных веществ.

    2.2 В настоящем стандарте применены следующие обозначения и сокращения:

    2.2.1 Обозначения и единицы измерения показателей, определяемых в испытаниях

    Обозначение

    Наименование показателя

    показателя

    единицы измерения показателя

    АР

    м2

    Площадь поперечного сечения изокинетического пробоотборника

    АТ

    м2

    Площадь поперечного сечения выпускной трубы

    СЕЕ

    -

    Эффективность по этану

    СЕМ

    -

    Эффективность по метану

    С1

    -

    Углеводороды, эквивалентные углероду С1

    сопс

    млн-1 или объемная доля, %

    Концентрация. Указанное обозначение используется в качестве нижнего индекса

    D0

    м3

    Отрезок, отсекаемый на координатной оси калибровочной функции PDP

    DF

    -

    Коэффициент разбавления

    D

    -

    Константа функции Бесселя

    Е

    -

    Константа функции Бесселя

    EZ

    г/(кВт×ч)

    Интерполированный выброс NOx в контрольной точке

    fa

    -

    Лабораторный атмосферный коэффициент

    fc

    с-1

    Частота, отсекаемая фильтром Бесселя

    FFH

    -

    Удельный коэффициент топлива для расчета влажного состояния по сухому состоянию

    Fs

    -

    Стехиометрический коэффициент

    GAIRV

    кг/ч

    Массовый расход воздуха на впуске во влажном состоянии

    GAIRD

    кг/ч

    Массовый расход воздуха на впуске в сухом состоянии

    GDILW

    кг/ч

    Массовый расход разбавленного воздуха во влажном состоянии

    GEDFW

    кг/ч

    Эквивалентный массовый расход разбавленных отработавших газов во влажном состоянии

    GEXHW

    кг/ч

    Массовый расход отработавших газов во влажном состоянии

    GFUEL

    кг/ч

    Массовый расход топлива

    GTOTW

    кг/ч

    Массовый расход разбавленных отработавших газов во влажном состоянии

    H

    мДж/м3

    Теплотворная способность

    HREF

    г/кг

    Исходная абсолютная влажность (10,71 г/кг)

    Ha

    г/кг

    Абсолютная влажность воздуха на впуске

    Hd

    г/кг

    Абсолютная влажность разбавляющего воздуха

    HTCART

    моль/моль

    Водородно-углеродное число

    i

    -

    Нижний индекс, обозначающий i-й режим

    К

    -

    Константа Бесселя

    k

    м-1

    Коэффициент светопоглощения

    KH, D

    -

    Поправочный коэффициент на влажность для NОx дизельного двигателя

    KH, G

    -

    Поправочный коэффициент на влажность для NOx газового двигателя

    Kv

    Калибровочная функция трубки Вентури CFV

    KW, a

    -

    Поправочный коэффициент при переходе из сухого состояния во влажное для воздуха на впуске

    KW, d

    -

    Поправочный коэффициент при переходе из сухого состояния во влажное для разбавляющего воздуха

    KW, e

    -

    Поправочный коэффициент при переходе из сухого состояния во влажное для разбавленных отработавших газов

    KW, r

    -

    Поправочный коэффициент при переходе из сухого состояния во влажное для неразбавленных отработавших газов

    L

    %

    Крутящий момент в процентах максимального крутящего момента испытуемого двигателя

    La

    м

    Эффективная база дымомера

    т

    Коэффициент наклона калибровочной функции насоса PDP

    mass

    г/ч или г

    Массовый расход (интенсивность потока). Указанное обозначение используется в качестве нижнего индекса

    MDIL

    кг

    Масса пробы разбавляющего воздуха, прошедшей через фильтры для отбора проб вредных частиц

    Md

    мг

    Уловленная масса проб вредных частиц в разбавляющем воздухе

    Мf

    мг

    Уловленная масса проб вредных частиц

    Мf, p

    мг

    Масса проб вредных частиц, уловленная на основном фильтре

    Мf, b

    мг

    Масса проб вредных частиц, уловленная на вспомогательном фильтре

    MSAM

    кг

    Масса пробы разбавленных отработавших газов, прошедших через фильтры для отбора вредных частиц

    MSEK

    кг

    Масса вторичного разбавляющего воздуха

    MTOTW

    кг

    Общая масса пробы CVS за цикл во влажном состоянии

    MTOTW, i

    кг

    Мгновенная масса пробы CVS во влажном состоянии

    N

    %

    Дымность

    NP

    -

    Общее число оборотов насоса PDP за цикл

    NP, i

    -

    Число оборотов насоса PDP в течение определенного промежутка времени

    n

    мин-1

    Частота вращения двигателя

    np

    с-1

    Частота вращения насоса PDP

    nhi

    мин-1

    Высокая частота вращения двигателя

    nlo

    мин-1

    Низкая частота вращения двигателя

    nref

    мин-1

    Исходная частота вращения двигателя для испытания ETC

    pa

    кПа

    Давление насыщения пара на впуске воздуха в двигатель

    pA

    кПа

    Абсолютное давление

    pB

    кПа

    Полное давление

    pd

    кПа

    Давление насыщения пара разбавляющего воздуха

    ps

    кПа

    Сухое атмосферное давление

    p1

    кПа

    Снижение давления на входе в насос

    P(a)

    кВт

    Мощность, поглощаемая вспомогательными устройствами, устанавливаемыми при проведении испытаний

    P(b)

    кВт

    Мощность, поглощаемая вспомогательными устройствами, демонтируемыми при проведении испытания

    P(n)

    кВт

    Некорректированная полезная мощность

    P(m)

    кВт

    Мощность, измеренная на испытательном стенде

    W

    -

    Константа Бесселя

    QS

    м3

    Объемный расход воздуха в трубке Вентури CFV

    q

    -

    Коэффициент разбавления

    r

    -

    Отношение площадей поперечного сечения изокинетического пробоотборника и выпускной трубы

    Ra

    %

    Относительная влажность воздуха на впуске

    Rd

    %

    Относительная влажность разбавляющего воздуха

    Si

    m-1

    Мгновенное значение дымности

    Sl

    -

    Коэффициент l-смещения

    T

    К

    Абсолютная температура

    Rf

    -

    Коэффициент чувствительности FID

    r

    кг/м3

    Плотность

    S

    кВт

    Мощность, на которую отрегулирован динамометр

    Та

    К

    Абсолютная температура воздуха на впуске

    t

    с

    Время измерения

    te

    с

    Время срабатывания электрического сигнала

    tf

    с

    Время реакции фильтра для функции Бесселя

    tp

    с

    Физическое время реакции

    Dt

    с

    Временной интервал между последовательными моментами считывания данных о дымности (= 1/частота отбора проб)

    Dt1

    с

    Временной интервал между значениями мгновенных расходов в трубке Вентури CFV

    t

    %

    Прозрачность дыма

    V0

    м3/об

    Калибровочная функция объемного расхода насоса PDP в эксплуатационных условиях (на 1 оборот вала насоса)

    W

    -

    Число Воббе

    Wact

    КВт×ч

    Фактическая работа за цикл испытания ETC

    Wref

    КВт×ч

    Исходная работа за цикл испытания ETC

    WF

    -

    Коэффициент весомости

    WFE

    -

    Эффективный коэффициент весомости

    X0

    м3/oб

    Калибровочная функция объемного расхода воздуха насоса PDP (на 1 оборот вала насоса)

    Yi

    м-1

    Среднее значение коэффициента светопоглощения за 1 с по Бесселю

    2.2.2 Обозначения химических компонентов

    СН4 - метан;

    С2Н6 - этан;

    С2Н5ОН - этанол;

    С3Н8 - пропан;

    СО - оксид углерода;

    DOP - диоктилфталат;

    СО2 - диоксид углерода;

    НС - углеводороды;

    NMHC - (non-methane hydrocarbons) углеводороды, не содержащие метан;

    x - оксиды азота;

    NO - оксид азота;

    2 - диоксид азота;

    РТ - (particulates) вредные частицы.

    ТНС - (total hydrocarbons) общее количество углеводородов.

    2.2.3 Сокращения

    CFV - (critical flow venturi) трубка Вентури с критическим расходом;

    CLD - (chemiluminescent detector) хемилюминесцентный детектор;

    CVS - (constant volume sampling) отбор проб при постоянном объеме;

    ELR - (European load response test) европейский цикл испытаний реакции двигателя на изменение нагрузки;

    ESC - (European steady state cycle) европейский цикл испытаний в установившихся режимах;

    ETC - (European transient cycle) европейский цикл испытаний в переходных режимах;

    FID - (flame ionization detector) плазменно-ионизационный детектор;

    GC - (gas chromatograph) газовый хроматограф;

    HCLD - (heated chemiluminescent detector) нагреваемый хемилюминесцентный детектор;

    HFID - (heated flame ionization detector) нагреваемый плазменно-ионизационный детектор;

    LPG - (liquefied petroleum gas) сжиженный нефтяной газ;

    NDIR - (non-dispersive infrared) недисперсионный инфракрасный анализатор;

    NG - (natural gas) природный газ;

    NMC - (non-methane cutter) отделитель фракций, не содержащих метан;

    PDP - (positive displacement pomp) насос с объемным регулированием;

    PSS - (particulate sampling system) система отбора проб вредных частиц.

    Источник: ГОСТ Р 41.49-2003: Единообразные предписания, касающиеся сертификации двигателей с воспламенением от сжатия и двигателей, работающих на природном газе, а также двигателей с принудительным зажиганием, работающих на сжиженном нефтяном газе, и транспортных средств, оснащенных двигателями с воспламенением от сжатия, двигателями, работающими на природном газе, и двигателями с принудительным зажиганием, работающими на сжиженном нефтяном газе. В отношении выбросов вредных веществ оригинал документа

    Русско-английский словарь нормативно-технической терминологии > нерациональный метод ограничения выбросов вредных веществ

  • 12 психическая энергия

    Гипотетически существующая и, по аналогии с физической, количественно измеримая энергия, лежащая в основе всякой активности психического аппарата и, следовательно, всех психических проявлений. Концепция психической энергии в том или ином виде присутствовала во всех теоретических построениях Фрейда. Однако ее серьезные недочеты постепенно вызвали волну резкой критики, приведшую в конечном итоге к требованиям отказа от концепции (Kubie, 1947, Holt, 1967, Rosenblatt and Thickstun, 1970). Тем не менее эвристичность понятия психическая энергия способствовала его выживанию.
    В 1923 году Фрейд предложил рассматривать два отдельных вида энергии — сексуальную энергию (или либидо) и агрессивную. Кроме того, с его точки зрения, следует выделить и нейтральную энергию, образующуюся в процессе слияния сексуальных и агрессивных элементов влечений, дальнейшей их десексуализации и деагрессивизации. Впоследствии аналитические исследования доказали наличие в психическом аппарате определенного количества изначальной нейтральной энергии, не требующей предварительного слияния сексуальных и агрессивных элементов и их преобразования. Соответственно предполагалось существование отдельной стадии развития, в которой энергия, равно как и психические структуры, находятся в недифференцированном состоянии. Следует добавить также, что в ранних формулировках Фрейда влечения (аффекты) рассматривались как равнозначные по отношению к количественным энергетическим характеристикам.
    В 1894 году Фрейд описывал психическую энергию как "...нечто...скользящее по поверхности следовых воспоминаний, подобно тому, как скользит электрический заряд по поверхности тела" (с. 60). Вклад психической энергии в мыслительные процессы, представления и образы был обозначен термином катексис. Соответственно наделенные энергией мысли и представления обозначаются как катектированные. Степень катексиса, то есть связи идей, представлений и образов с психической энергией, рассматривалась в качестве важнейшего отличительного признака двух способов мышления — первичного и вторичного процессов. При первичном процессе психическая энергия относительно подвижна и не является нейтрализованной. Вторичные процессы мышления, напротив, характеризуются связанной и нейтрализованной энергией, сдерживаемой и управляемой функциями непосредственной разрядки. Кроме того, принято различать понятие гиперкатексиса, объясняющего феномен внимания, и понятие контркатексиса, объясняющего механизмы вытеснения.
    Функции психической энергии могут быть либо мотивационными, либо инструментальными. Накопление психической энергии требует соответствующей разрядки и тем самым поддерживает такие поведенческие компоненты, как побуждения и влечения. Разрядка психической энергии и модель редукции напряжения являются центральными для психоаналитической теории мотивации, основывающейся на подавлении инстинктивных влечений. С другой стороны, психическая энергия имеет различные инструментальные функции, например, формирование сигнальной тревоги или содействие переходу бессознательных мыслей и идей в сознание.
    Принято считать, что контроль над уровнем энергии в психическом аппарате осуществляется благодаря ряду регуляторных принципов. Принцип инерции (одно из наиболее ранних понятий Фрейда) гласит о том, что первичные функции психического аппарата, лишаясь энергетической стимуляции, тут же возвращаются в инертное состояние. Этот принцип, однако, был заменен впоследствии на принцип нирваны, регулирующий проявления влечения к смерти. Впервые принцип нирваны был использован Фрейдом в работе "По ту сторону принципа удовольствия" (1920) для обозначения таких тенденций психического аппарата, которые направлены прежде всего на снижение уровня энергии до нулевого или близкого к нему значения. Буддистская концепция нирваны, как известно, утверждает, что достижение состояния покоя, блаженства и счастья возможно лишь на пути "погашения" или "замирания" всяческих желаний. Принцип нирваны близок к принципу постоянства, являющегося, по сути, гомеостатическим или вторично уравновешивающим правилом деятельности организма. Согласно последнему, психический аппарат стремится удерживать всякое возбуждение на как можно более низком, близком к минимальному, уровне. Фрейд рассматривал этот принцип как обязательное условие для сохранения организмом имеющихся запасов энергии, вполне достаточных для выполнения отдельных действий.
    С развитием теоретических положений принцип постоянства был преобразован в принцип удовольствия. В его основу была положена аксиома: всякое человеческое существо ищет удовлетворения и избегает неудовольствия. Следовательно, преобладающее влияние принципа удовольствия приводит к поискам разрядки психической энергии. Однако и здесь Фрейду пришлось признать существование определенных несоответствий между теоретическими построениями и клиническими наблюдениями: не всякое удовольствие, связанное с потребностью в разрядке (и наоборот, неудовольствие — с накоплением психической энергии, например, сексуальное поведение с приятным компонентом переживаний), подчиняется принципу удовольствия. Поэтому Фрейд предложил ввести в психоаналитический обиход еще один фактор — ритмичность накопления и разрядки психической энергии.
    Концепция психической энергии является центральной для экономического и динамического подходов. После их построения все метапсихологические описания психических процессов и поведенческих проявлений обязательно включали изучение энергетического катексиса и контркатексиса, определение видов используемой психическим аппаратом энергии (либидинозной, агрессивной и нейтральной), а также способов ее распределения и развертывания.
    см. инстинктивные влечения, метапсихология, первичный процесс, принцип удовольствия/неудовольствия
    \
    Лит.: [241, 300, 303, 434, 531, 734]

    Словарь психоаналитических терминов и понятий > психическая энергия

  • 13 Самость

    1. self
    1. Термин, обозначающий: а) целостную личность во всех ее реальных проявлениях, включая телесную и психическую организацию индивида; б) "мою", "собственную" личность, противостоящую другим лицам или объектам вне "меня". Термин Самость заимствован из обыденной речи, где его употребление может заменять и перекрывать многие технические аспекты, относящиеся к концепции себя, образа себя, схем себя и тождественности самому себе. Схемы Самости представляют собой устойчивые структуры, принимающие активное участие в организации психических процессов и кодировании того, как человек сознательно и бессознательно воспринимает самого себя. Такие схемы ранжируются от реалистичного взгляда на себя до полностью искаженного, наблюдающегося в отдельные периоды у каждого индивида. Их основой являются репрезентации Самости — психические содержания в системе Я, бессознательно, предсознательно или сознательно отражающие аспекты телесной или психической Самости, включая влечения и аффекты, возникающие в реакции индивида на себя и внешний мир. Совместно со схемами объекта схемы Самости обеспечивают организацию базисного и актуального материала для формирования всех адаптивных и защитных функций. В процессе созревания различные схемы Самости выстраиваются в виде иерархической упорядоченной организованной структуры, составляющей Самость.
    Кодирование Самости в виде сенсорного способа представлений называется образом Самости, который может быть представлен зрительными, слуховыми или осязательными компонентами. Видение себя в конкретной ситуации и в определенное время обозначается термином концепция Самости. Последняя слагается из комплексных представлений о собственном внутреннем состоянии, сочетающихся с концепцией собственного тела. Идеационные компоненты концепции Самости кодируются на основе непосредственного опыта (ощущений, эмоций, мыслей) и косвенного восприятия телесной и психической Самости, выступающей уже в качестве объекта. Концепция Самости может быть сознательной или бессознательной, реалистичной или нереалистичной. Она может относительно правильно (то есть в соответствии с реальным положением вещей) отражать совокупность физических, эмоциональных и психических свойств индивида; однако при определенных условиях концепция Самости может быть нереалистичной, искаженной вытеснением или смещением неприемлемых для индивида собственных качеств либо их "заместителей" (например, фантазий), сопряженных с отдельными желаниями и потребностями в защите.
    Самооценка представляет собой конечный результат сопоставления себя с идеальной концепцией Самости, притязаниями, а также оценками со стороны значимых для индивида лиц или социальных групп. Как правило, самооценка осознается лишь отчасти и становится заметной только при ее утрате. Если оценочные суждения положительны, аффективный ответ на них будет характеризоваться приподнятым настроением и экспансивностью. Снижение самооценки, наоборот, сопровождается обостренными переживаниями неполноценности и нерешительностью.
    В психоаналитической литературе термин "Самость" используется в различных контекстах. Фрейд, особенно до построения структурной теории, часто использовал понятие Я, подразумевая Самость. В таких концепциях, как обращение на себя влечений, Самость (или Я) рассматривается как противоположность объекта. Гартманн рассматривал эту проблему, отделив Я, как группу функций, от Самости. С этих позиций нарциссизм может рассматриваться как катексис либидо, направленный не столько на Я, сколько на Самость. Якобсон использовала термин Самость для обозначения личности в ее целостном выражении. Шафером выделены три разновидности понятия Самость: в качестве действующего начала, в качестве места или поля действия и в качестве объекта. Кохут определял Самость как независимый инициативный центр. Другие авторы — Мейснер, Лихтенберг, Штерн — использовали термин Самость для обозначения опыта, приобретаемого либо в виде чувства себя, либо при развитии Самости в мире субъективности и взаимоотношений с другими. Независимо от того, в рамках какой понятийной системы осмысляется этот термин, в любом случае Самость более тесно связана с опытом, чем Оно, Я и Сверх-Я.
    \
    Лит.: [439, 476, 558, 705, 807]
    2. Термин, употребляемый в аналитической психологии с 1916 года в нескольких различных значениях: 1) души в целом; 2) тенденции души функционировать упорядоченно и структурированно, сообразно цели и плану; 3) тенденции души продуцировать образы и символы, стоящие "по ту сторону" Я (образ Бога или героических персонажей, выполняющих эту роль, которые обращают людей к необходимости и возможности роста и развития); 4) психологического единства человека с момента рождения. Это единство при накоплении жизненного опыта постепенно разрушается, но остается неким шаблоном или эскизом для последующих переживаний целостности и интеграции. Иногда мать рассматривается в качестве "носителя" детской Самости. Имеется в виду нечто сходное с процессом, называемым в психоанализе "отзеркаливание".
    Термин, относящийся к аппарату глубинной психологии и обозначающий сердцевину, ядро личности. Самость понимается как сложное образование, формирующееся в виде устойчивой конфигурации взаимодействующих врожденных качеств личности и влияний окружения. В результате такого взаимодействия индивид получает возможность переживать самообъекты уже на ранних стадиях развития. В дальнейшем происходит образование устойчивой целостной психологической структуры. Самость представляет собой центр инициативности, хранилище впечатлений, область пересечения идеалов, эталонов поведения, притязаний и способностей индивида. Перечисленные свойства являются основой развертывания Самости в качестве самостимулирующейся, самонаправляющейся, самоосознаваемой и самоподдерживающейся целостности, обеспечивающей личность основными целями и смыслом жизни. Особенности притязаний, способностей, норм (стандартов) и возникающие между ними виды напряжения, программы деятельности и активности, структурирующие жизненный путь индивида, сочетаясь в различных пропорциях, переживаются как некая непрерывность во времени и пространстве и придают личности смысл и сущность Самости, отдельного и осмысленного бытия, средоточия инициативности и накапливающихся впечатлений.
    Составляющими или секторами Самости являются: 1) полюс базальных стремлений обладать силой и знаниями (полюс целей и притязаний); 2) полюс руководящих идеалов (полюс идеалов и норм); 3) дуга напряжения между обоими крайними полюсами, активизирующая основные способности индивида. Здоровая Самость может быть представлена в виде функционального континуума секторов, расположенных между полюсами. Для отграничения двухполюсной структуры Самости от рассматриваемых в литературе Кохут вводит в рамках собственной концепции специальный термин биполярная Самость.
    В зависимости от уровня развития и/или особенностей проявления составных частей описаны следующие типы Самости.
    Виртуальная Самость, то есть образ зарождающейся Самости в представлениях родителей. Именно родители придают форму бытию Самости ребенка; соответственно, виртуальная Самость определяет способ, с помощью которого конкретные родители "закладывают" в новорожденного потенциальные качества личности.
    Ядерная Самость рассматривается как впервые проявляющаяся (на втором году жизни) связная организация структур психики.
    Связная Самость представляет собой относительно взаимосвязанные структуры нормально функционирующей Самости.
    Термином грандиозная Самость принято описывать нормальную эксгибиционистскую Самость младенца, в структуре которой преобладают переживания беззаботности и средоточия всего бытия.
    Кроме того, были описаны патологические состояния Самости.
    Архаическая Самость представляет собой патологические проявления ядерных сочетаний Самости (нормальных для раннего периода развития) у зрелого индивида.
    Фрагментированная Самость отражает хронические либо повторяющиеся состояния, которые характеризуются снижением степени связности отдельных частей Самости. Фрагментирование является результатом повреждения либо дефекта объектных ответов либо следствием других вызывающих регрессию факторов. Фрагментирующая тревога может проявляться в различной степени — от легкой нервозности (сигнальная тревога) до полной паники, возвещающей о наступлении распада Самости.
    Опустошенная Самость отражает утрату жизненных сил с картиной опустошающей депрессии. Она возникает вследствие неспособности самообъекта радоваться существованию и утверждению Самости.
    Перегруженная Самость представляет собой состояние дефицита, при котором Самость не способна успокоить себя или облегчить себя при страдании, то есть не умеет найти подходящие условия для воссоединения с успокоительным всемогущим самообъектом.
    Перевозбужденная Самость рассматривается как состояние повторяющихся проявлений повышенной эмоциональности или возбужденности, возникающих в результате чрезмерных либо неприемлемых для данной фазы развития неэмпатических ответов со стороны самообъектов.
    Несбалансированная Самость описывается как состояние непрочности составных частей Самости. При этом одна из частей, как правило, доминирует над остальными. Если слабый оценочный полюс не может обеспечить достаточного "руководства", Самость страдает от чрезмерной амбициозности, достигающей уровня психопатии. При чрезмерно развитом оценочном полюсе Самость оказывается "скованной" чувством вины и в результате "стесненной" в своих проявлениях. Третий тип несбалансированности Самости характеризуется выраженной дугой напряжения между двумя относительно слабыми полюсами. Такой тип Самости является, так сказать, отстраненным от ограничивающих идеалов и личностных целей, в результате чего индивид отличается повышенной чувствительностью к давлению со стороны внешнего окружения. В качестве примера можно привести образ специалиста в технической области знаний, полностью посвятившего себя самосовершенствованию в профессиональной деятельности, но в то же время лишенного сбалансированной позиции в сфере личностных притязаний или этических оценок. Выраженность несбалансированности варьирует в широких пределах — от относительно нормальных личностных проявлений до предпсихотической личности.
    Как нормальная, так и патологическая структура Самости в равной степени связаны с процессами интернализации связей между Самостью и его объектами. При этом самообъект рассматривается как субъективное переживание индивидом поддержки, создаваемой другими людьми (объектами). Хотя термин самообъект вполне применим по отношению к поддерживающим лицам, его нужно использовать прежде всего для описания интрапсихических переживаний, отражающих различные типы взаимоотношений Самости с другими объектами. Поэтому отношения, характеризующие самообъекты, следует выражать в терминах поддерживающей Самость функции, преобразования которой зависят либо от влияния других людей, либо от временного параметра — периода, наиболее значимого для проявления данной функции.
    Инфантильные самообъекты отражают переживания нормальной поддержки Самости в раннем детском возрасте. Этот тип переживаний представляет собой слияние опыта, проистекающего из пока еще недостаточно разграниченных на когнитивном уровне Самости и самообъекта. На этой стадии развития самообъекты еще не могут переживаться ребенком как "вместилище" отдельных центров инициативности и интенциональности.
    Архаические самообъекты предполагает патологическую потребность в функциях, обычно присущих детскому самообъекту. При этом патологические черты архаический самообъект может приобрести только в зрелом возрасте.
    Отражающие самообъекты, "притягивая" и укрепляя ощущения значимости, целостности и положительной самооценки, поддерживают наиболее важные для индивида фантазии и представления.
    Идеализируемые (или идеализированные) самообъекты обеспечивают "слияние" с образом бесстрашной, мудрой, сильной и доброй идеализируемой личности.
    Самообъекты "второго Я" отражают переживания поддержки со стороны других людей, представляемых индивидом в виде какой-либо части самого себя.
    Соперничающие самообъекты обеспечивают переживания, связанные с центром инициативности, действующим в направлении оппозиционного самоутверждения.

    Словарь психоаналитических терминов и понятий > Самость

  • 14 программируемый логический контроллер

    1. storage-programmable logic controller
    2. Programmable Logic Controller
    3. programmable controller
    4. PLC

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Русско-английский словарь нормативно-технической терминологии > программируемый логический контроллер

  • 15 гипотиреоз

    Универсальный русско-английский словарь > гипотиреоз

  • 16 истощение

    1) General subject: atrophy, attenuation, denutrition, depauperation, depletion (запасов, сил и т. п.), distress, drain, emaciation, exhaustion, exinanition, extenuation, fag, goneness, impoverishment, inanition, leanness, maceration, overtaxation, prostration, malnutrition
    3) Medicine: abrosia, absorption (иммунной сыворотки), asarcia, cachexia, cachexy, debilitation, debility, deterioration (функции), syntexis, undernourishment, undernutrition, wasting, wearing off (феномен истощения дозы препарата при лечении паркинсонизма)
    4) Military: attrition, poopout (сил)
    5) Engineering: attenuation (бродящей жидкости), displacing, exhaust, working-out
    6) Bookish: tabescence
    7) Agriculture: attrition, fatigue (почвы)
    8) Rare: tabefaction
    9) Chemistry: exhausting
    10) Construction: decay (водного источника), depletion (источника, водного горизонта, стока)
    11) Mathematics: depletion o (f)
    13) Accounting: depletion (снижение с течением времени стоимости природных ресурсов (natural resources), например скважин, месторождений (см. depreciation))
    15) Diplomatic term: depletion (недр и угодий), impoverishment (запасов)
    16) Metallurgy: depleting
    19) Drilling: primary depletion
    21) Solar energy: starvation
    22) EBRD: depletion (о месторождениях, скважинах), impoverishment (о месторождениях, скважинах)
    24) Makarov: bottoming (рудного тела), decline, depletion (потери воды из поверхностных или подземных резервуаров со скоростью, превышающей пополнение), exhaustion (напр. почвы, ресурсов), exhaustion (напр., почвы, ресурсов), overtaxation (сил), sickness (почвы)

    Универсальный русско-английский словарь > истощение

  • 17 атрофия

    Russian-english psychology dictionary > атрофия

  • 18 лютеинизирующий гормон

    = лютропин
    [лат. luteus — желтый; греч. hormao — привожу в движение, побуждаю]
    гонадотропный гормон (см. гонадотропные гормоны), гликопротеид, синтезируемый передней частью аденогипофиза, который состоит из 2 субъедениц, нековалентно связанных друг с другом. Л.г. вызывает рост желтого тела яичника и стимулирует активность интерстициальных клеток семенника. Биосинтез и выделение Л.г. контролируются специальным релизинг-гормоном — люлибирином (см. люлибирин). Снижение скреции Л.г. приводит к нарушению детородной функции и бесплодию.

    Толковый биотехнологический словарь. Русско-английский. > лютеинизирующий гормон

  • 19 символизм

    Символизм есть форма непрямого, косвенного представления; символизация — уникальный, присущий только человеку психический процесс замещения одних образов другими идеационными образованиями, характеризующимися лишь отдаленным сходством с первичными представлениями — сходством, основанным на случайных, вторичных, малосущественных деталях. В широком смысле понятие символа относятся ко всем видам замены простого словесного выражения наблюдаемых и гипотетических явлений другими, непрямыми способами отражения — математическим, химическим, физическим, фонетическим, речевым и др. В психоанализе принято разграничивать два основных типа символического отражения явлений: 1) сравнительное (в виде знака или признака), когда соотношения между обозначаемым (понятием) и обозначающим средством (звуком, образом) строятся на основе общепринятых в данной культуре правил (соглашения), как это бывает в случае большинства употребляемых слов; 2) в виде символа, имеющего сознательную, "явную" часть, но на самом деле отражающего скрытое, латентное, бессознательное психическое содержание. Во втором случае соотношение между символом и его содержанием основано на общем сходстве либо аналогии. Так, например, образ дома может отражать человеческое тело, вид башни — пенис и т.п. Подобные косвенные и непроизвольные элементы понятия символ лингвистом де Соссюром (1966) обозначены как мотивационные. Именно этот — мотивационный — смысл вкладывал в понятие символа и Фрейд. С его точки зрения, символическое значение выявляется посредством ассоциаций, нередко весьма неопределенных, а потому трудноразличимых.
    Если знак "...как средство общения связан с торможением разрядки, препятствием на ее пути... то символ при вытеснении либо искажении бессознательного содержания имеет возможность ‘разрядиться' прямым, непосредственным образом" (Beres, 1960, с. 330). Различия между знаком и символом, а также сознательными и бессознательными символическими процессами подробно изучены в работах Пиаже (1962), Вернера и Каплан (1984).
    Символы могут рассматриваться как некие "заменители" языкового выражения (чисто конвенциональной системы) или же сознательной либо бессознательной организации мышления, проявляющегося в виде свободных ассоциаций. Язык, знаковая система и упорядоченное мышление, напротив, являются подвидами врожденной способности к репрезентации (символизации в широком смысле), с помощью которых они могут реализовываться и сохраняться.
    Интерес к проблеме символа в психоаналитической теории имеет длительную историю; он восходит к наблюдениям Фрейда, выявившего параллели между представлениями у людей примитивных культур и невротическими симптомами и символическими сновидениями у современников. Все виды символов Фрейд понимал как следствие бессознательных первичных процессов, направленных на снижение уровня тревоги (с помощью вытеснения неприемлемых для индивида желаний и мыслей). Символообразование сдерживает разрядку напряжения, возникающую между побуждениями и возможными реакциями. Символы призваны смещать желания с запретных объектов на объекты-"заменители", обеспечивая тем самым непосредственное удовлетворение. Компромисс, достигаемый частичной экспрессией с помощью символов, служит как индивиду, так и культуре.
    Фрейд отмечал, что основными объектами символического выражения являются функции тела и его отдельных частей, сексуальность, семья, а также рождение и смерть, что, в частности, подтверждается содержанием конфликтов, симптоматики и проблем пациентов. В более поздних психоаналитических концепциях учитываются также способы самораскрытия Самости (Ricoeur, 1970). Специфическое символообразование в структуре нарушений мышления, расстройств настроения и характера можно интерпретировать как усилия индивида заново обрести утраченные объекты или восстановить утраченную упорядоченность — упорядоченность, достигнутую благодаря способности человека к символизации в широком смысле слова.
    Ранние убеждения Фрейда относительно универсального, врожденного характера символов и первичных фантазий в настоящее время подвергаются существенному пересмотру. Принято считать, что сходство основных символических образов в различных культурах связано с общностью человеческого опыта как такового, с формами выражения детской любознательности и, наконец, с собственно когнитивными процессами, задействованными в символообразовании. Однако, как отмечал Фрейд (1918), когнитивные процессы не всегда соответствуют схемам, связанным с индивидуальным опытом. В подобных случаях символы могут отражать не только отсутствующие в прошлом опыте индивида события, но и отдельные аспекты "перспективы". Иными словами, подмеченные Фрейдом схемы когнитивных процессов детерминированы не столько прошлым опытом индивида, сколько моделью, состоящей из компонентов как прошлого, так и "будущего" (Smith, 1976).
    Несмотря на отсутствие прямых связей между символами и образованием ассоциаций, знание и осторожное использование бессознательных характеристик символа может стать важным подспорьем в понимании различных конфликтов пациента. Символизм всегда сочетается с неоднозначностью интерпретаций и поэтому требует учета всех допустимых значений символа, приобретающего конкретное выражение только в общем контексте защитных либо адаптивных процессов. Исходя из общетеоретических положений, определенные аспекты междисциплинарного изучения символизма должны включать в себя проблемы формирования и раннего развития процессов символизации, соотношений между символическими формами выражения состояний сознания, а также степени вовлеченности конфликтных образований в процессы символизации.
    \
    Лит.: [71, 106, 249, 289, 296, 326, 686, 722, 726, 756, 784, 796, 858, 871]

    Словарь психоаналитических терминов и понятий > символизм

  • 20 синхронизация времени

    1. time synchronization
    2. clock synchronization

     

    синхронизация времени
    -
    [ ГОСТ Р МЭК 60870-5-103-2005]

    Также нормированы допустимые временные задержки для различных видов сигналов, включая дискретные сигналы, оцифрованные мгновенные значения токов и напряжений, сигналы синхронизации времени и т.п.
    [Новости Электротехники №4(76) | СТАНДАРТ МЭК 61850]

    Широковещательное сообщение, как правило, содержит адрес отправителя и глобальный адрес получателя. Примером широковещательного сообщения служит синхронизация времени.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    Устройства последних поколений дают возможность синхронизации времени с точностью до микросекунд с помощью GPS.

    С помощью этого интерфейса сигнал синхронизации времени (от радиоприемника DCF77 сигнал точного времени из Braunschweig, либо от радиоприемника iRiG-B сигнал точного времени  глобальной спутниковой системы GPS) может быть передан в терминал для точной синхронизации времени.

    [Герхард Циглер. ЦИФРОВАЯ ДИСТАНЦИОННАЯ ЗАЩИТА. ПРИНЦИПЫ И ПРИМЕНЕНИЕ
    Перевод с английского ]

    В  том  случае  если  принятое  сообщение  искажено ( повреждено)  в  результате неисправности  канала  связи  или  в  результате  потери  синхронизации  времени, пользователь имеет возможность...

    2.13 Синхронизация часов реального времени сигналом по оптовходу 
    В современных системах релейной защиты зачастую требуется синхронизированная работа часов всех реле в системе для восстановления хронологии работы разных реле.
    Это может быть выполнено с использованием сигналов синхронизации времени   по интерфейсу IRIG-B, если  реле  оснащено  таким  входом  или  сигналом  от  системы OP

    [Дистанционная защита линии MiCOM P443/ ПРИНЦИП  РАБОТЫ]


    СИНХРОНИЗАЦИЯ ВРЕМЕНИ СОГЛАСНО СТАНДАРТУ IEEE 1588

    Автор: Андреас Дреер (Hirschmann Automation and Control)

    Вопрос синхронизации устройств по времени важен для многих распределенных систем промышленной автоматизации. При использовании протокола Precision Time Protocol (PTP), описанного стандартом IEEE 1588, становится возможным выполнение синхронизации внутренних часов устройств, объединенных по сети Ethernet, с погрешностями, не превышающими 1 микросекунду. При этом к вычислительной способности устройств и пропускной способности сети предъявляются относительно низкие требования. В 2008 году была утверждена вторая редакция стандарта (IEEE 1588-2008 – PTP версия 2) с рядом внесенных усовершенствований по сравнению с первой его редакцией.

    ЗАЧЕМ НЕОБХОДИМА СИНХРОНИЗАЦИЯ УСТРОЙСТВ ПО ВРЕМЕНИ?

    Во многих системах должен производиться отсчет времени. О неявной системе отсчета времени можно говорить тогда, когда в системе отсутствуют часы и ход времени определяется процессами, протекающими в аппаратном и программном обеспечении. Этого оказывается достаточно во многих случаях. Неявная система отсчета времени реализуется, к примеру, передачей сигналов, инициирующих начало отсчета времени и затем выполнение определенных действий, от одних устройств другим.

    Система отсчета времени считается явной, если показания времени в ней определяются часами. Указанное необходимо для сложных систем. Таким образом, осуществляется разделение процедур передачи данных о времени и данных о процессе.

    Два эффекта должны быть учтены при настройке или синхронизации часов в отдельных устройствах. Первое – показания часов в отдельных устройствах изначально отличаются друг от друга (смещение показаний времени друг относительно друга). Второе – реальные часы не производят отсчет времени с одинаковой скоростью. Таким образом, требуется проводить постоянную корректировку хода самых неточных часов.

    ПРЕДЫДУЩИЕ РЕШЕНИЯ

    Существуют различные способы синхронизации часов в составе отдельных устройств, объединенных в одну информационную сеть. Наиболее известные способы – это использование протокола NTP (Network Time Protocol), а также более простого протокола, который образован от него – протокола SNTP (Simple Network Time Protocol). Данные методы широко распространены для использования в локальных сетях и сети Интернет и позволяют обеспечивать синхронизацию времени с погрешностями в диапазоне миллисекунд. Другой вариант – использование радиосигналов с GPS спутников. Однако при использовании данного способа требуется наличие достаточно дорогих GPS-приемников для каждого из устройств, а также GPS-антенн. Данный способ теоретически может обеспечить высокую точность синхронизации времени, однако материальные затраты и трудозатраты обычно препятствуют реализации такого метода синхронизации.

    Другим решением является передача высокоточного временного импульса (например, одного импульса в секунду) каждому отдельному устройству по выделенной линии. Реализация данного метода влечет за собой необходимость создания выделенной линии связи к каждому устройству.

    Последним методом, который может быть использован, является протокол PTP (Precision Time Protocol), описанный стандартом IEEE 1588. Протокол был разработан со следующими целями:

    • Обеспечение синхронизация времени с погрешностью, не превышающей 1 микросекунды.
    • Предъявление минимальных требований к производительности процессоров устройств и к пропускной способности линии связи, что позволило бы обеспечить реализацию протокола в простых и дешевых устройствах.
      • Предъявление невысоких требований к обслуживающему персоналу.
      • Возможность использования в сетях Ethernet, а также в других сетях.
      • Спецификация его как международного стандарта.

    ОБЛАСТИ ПРИМЕНЕНИЯ ПРОТОКОЛА PTP

    Протокол PTP может быть применен в различного рода системах. В системах автоматизации, протокол PTP востребован везде, где требуется точная синхронизация устройств по времени. Протокол позволяет синхронизировать устройства в робототехнике или печатной промышленности, в системах осуществляющих обработку бумаги и упаковку продукции и других областях.

    В общем и целом в любых системах, где осуществляется измерение тех или иных величин и их сравнение с величинами, измеренными другими устройствами, использование протокола PTP является популярным решением. Системы управления турбинами используют протокол PTP для обеспечения более эффективной работы станций. События, происходящие в различных частях распределенных в пространстве систем, определяются метками точного времени и затем для целей архивирования и анализа осуществляется их передача на центры управления. Геоученые используют протокол PTP для синхронизации установок мониторинга сейсмической активности, удаленных друг от друга на значительные расстояния, что предоставляет возможность более точным образом определять эпицентры землетрясений. В области телекоммуникаций рассматривают возможность использования протокола PTP для целей синхронизации сетей и базовых станций. Также синхронизация времени согласно стандарту IEEE 1588 представляет интерес для разработчиков систем обеспечения жизнедеятельности, систем передачи аудио и видео потоков и может быть использована в военной промышленности.

    В электроэнергетике протокол PTPv2 (протокол PTP версии 2) определен для синхронизации интеллектуальных электронных устройств (IED) по времени. Например, при реализации шины процесса, с передачей мгновенных значений тока и напряжения согласно стандарту МЭК 61850-9-2, требуется точная синхронизация полевых устройств по времени. Для реализации систем защиты и автоматики с использованием сети Ethernet погрешность синхронизации данных различных устройств по времени должна лежать в микросекундном диапазоне.

    Также для реализации функций синхронизированного распределенного векторного измерения электрических величин согласно стандарту IEEE C37.118, учета, оценки качества электрической энергии или анализа аварийных событий необходимо наличие устройств, синхронизированных по времени с максимальной точностью, для чего может быть использован протокол PTP.

    Вторая редакция стандарта МЭК 61850 определяет использование в системах синхронизации времени протокола PTP. Детализация профиля протокола PTP для использования на объектах электроэнергетики (IEEE Standard Profile for Use of IEEE 1588 Precision Time Protocol in Power System Applications) в настоящее время осуществляется рабочей группой комитета по релейной защите и автоматике организации (PSRC) IEEE.

    ПРОТОКОЛ PTP ВЕРСИИ 2

    В 2005 году была начата работа по изменению стандарта IEEE1588-2002 с целью расширения возможных областей его применения (телекоммуникации, беспроводная связь и в др.). Результатом работы стало новое издание IEEE1588-2008, которое доступно с марта 2008 со следующими новыми особенностями:

    • Усовершенствованные алгоритмы для обеспечения погрешностей в наносекундном диапазоне.
    • Повышенное быстродействие синхронизации времени (возможна более частая передача сообщений синхронизации Sync).
    • Поддержка новых типов сообщений.
    • Ввод однорежимного принципа работы (не требуется передачи сообщений типа FollowUp).
    • Ввод поддержки функции т.н. прозрачных часов для предотвращения накопления погрешностей измерения при каскадной схеме соединения коммутаторов.
    • Ввод профилей, определяющих настройки для новых областей применения.
    • Возможность назначения на такие транспортные механизмы как DeviceNet, PROFInet и IEEE802.3/Ethernet (прямое назначение).
    • Ввод структуры TLV (тип, длина, значение) для расширения возможных областей применения стандарта и удовлетворения будущих потребностей.
    • Ввод дополнительных опциональных расширений стандарта.

    ПРИНЦИП ФУНКЦИОНИРОВАНИЯ СИСТЕМ НА ОСНОВЕ ПРОТОКОЛА PTP

    В системах, где используется протокол PTP, различают два вида часов: ведущие часы и ведомые часы. Ведущие часы, в идеале, контролируются либо радиочасами, либо GPS-приемниками и осуществляют синхронизацию ведомых часов. Часы в конечном устройстве, неважно ведущие ли они или ведомые, считаются обычными часами; часы в составе устройств сети, выполняющих функцию передачи и маршрутизации данных (например, в Ethernet-коммутаторах), считаются граничными часами.

    Процедура синхронизации согласно протоколу PTP подразделяется на два этапа. На первом этапе осуществляется коррекция разницы показаний времени между ведущими и ведомыми часами – то есть осуществляется так называемая коррекция смещения показаний времени. Для этого ведущее устройство осуществляет передачу сообщения для целей синхронизации времени Sync ведомому устройству (сообщение типа Sync). Сообщение содержит в себе текущее показание времени ведущих часов и его передача осуществляется периодически через фиксированные интервалы времени. Однако поскольку считывание показаний ведущих часов, обработка данных и передача через контроллер Ethernet занимает некоторое время, информация в передаваемом сообщении к моменту его приема оказывается неактуальной.   Одновременно с этим осуществляется как можно более точная фиксация момента времени, в который сообщение Sync уходит от отправителя, в составе которого находятся ведущие часы (TM1). Затем ведущее устройство осуществляет передачу зафиксированного момента времени передачи сообщения Sync ведомым устройствам (сообщение FollowUp). Те также как можно точнее осуществляют измерение момента времени приема первого сообщения (TS1) и вычисляют величину, на которую необходимо выполнить коррекцию разницы в показаниях времени между собою и ведущим устройством соответственно (O) (см. рис. 1 и рис. 2). Затем непосредственно осуществляется коррекция показаний часов в составе ведомых устройств на величину смещения. Если задержки в передачи сообщений по сети не было, то можно утверждать, что устройства синхронизированы по времени.

    На втором этапе процедуры синхронизации устройств по времени осуществляется определение задержки в передаче упомянутых выше сообщений по сети между устройствами. Указанное выполняется  при использовании сообщений специального типа. Ведомое устройство отправляет так называемое сообщение Delay Request (Запрос задержки в передаче сообщения по сети) ведущему устройству и осуществляет фиксацию момента передачи данного сообщения. Ведущее устройство фиксирует момент приема данного сообщения и отправляет зафиксированное значение в сообщении Delay Response (Ответное сообщение с указанием момента приема сообщения). Исходя из зафиксированных времен передачи сообщения Delay Request ведомым устройством и приема сообщения Delay Response ведущим устройством производится оценка задержки в передачи сообщения между ними по сети. Затем производится соответствующая коррекция показаний часов в ведомом устройстве. Однако все упомянутое выше справедливо, если характерна симметричная задержка в передаче сообщения в обоих направлениях между устройствами (то есть характерны одинаковые значения в задержке передачи сообщений в обоих направлениях).

    Задержка в передачи сообщения в обоих направлениях будет идентичной в том случае, если устройства соединены между собой по одной линии связи и только. Если в сети между устройствами имеются коммутаторы или маршрутизаторы, то симметричной задержка в передачи сообщения между устройствами не будет, поскольку коммутаторы в сети осуществляют сохранение тех пакетов данных, которые проходят через них, и реализуется определенная очередность их передачи. Эта особенность может, в некоторых случаях, значительным образом влиять на величину задержки в передаче сообщений (возможны значительные отличия во временах передачи данных). При низкой информационной загрузке сети этот эффект оказывает малое влияние, однако при высокой информационной загрузке, указанное может значительным образом повлиять на точность синхронизации времени. Для исключения больших погрешностей был предложен специальный метод и введено понятие граничных часов, которые реализуются в составе коммутаторов сети. Данные граничные часы синхронизируются по времени с часами ведущего устройства. Далее коммутатор по каждому порту является ведущим устройством для всех ведомых устройств, подключенных к его портам, в которых осуществляется соответствующая синхронизация часов. Таким образом, синхронизация всегда осуществляется по схеме точка-точка и характерна практически одинаковая задержка в передаче сообщения в прямом и обратном направлении, а также практическая неизменность этой задержки по величине от одной передачи сообщения к другой.

    Хотя принцип, основанный на использовании граничных часов показал свою практическую эффективность, другой механизм был определен во второй  версии протокола PTPv2 – механизм использования т. н. прозрачных часов. Данный механизм  предотвращает накопление погрешности, обусловленной изменением величины задержек в передаче сообщений синхронизации коммутаторами и предотвращает снижение точности синхронизации в случае наличия сети с большим числом каскадно-соединенных коммутаторов. При использовании такого механизма передача сообщений синхронизации осуществляется от ведущего устройства ведомому, как и передача любого другого сообщения в сети. Однако когда сообщение синхронизации проходит через коммутатор фиксируется задержка его передачи коммутатором. Задержка фиксируется в специальном поле коррекции в составе первого сообщения синхронизации Sync или в составе последующего сообщения FollowUp (см. рис. 2). При передаче сообщений Delay Request и Delay Response также осуществляется фиксация времени задержки их в коммутаторе. Таким образом, реализация поддержки т. н. прозрачных часов в составе коммутаторов позволяет компенсировать задержки, возникающие непосредственно в них.

    РЕАЛИЗАЦИЯ ПРОТОКОЛА PTP

    Если необходимо использование протокола PTP в системе, должен быть реализован стек протокола PTP. Это может быть сделано при предъявлении минимальных требований к производительности процессоров устройств и к пропускной способности сети. Это очень важно для реализации стека протокола в простых и дешевых устройствах. Протокол PTP может быть без труда реализован даже в системах, построенных на дешевых контроллерах (32 бита).

    Единственное требование, которое необходимо удовлетворить для обеспечения высокой точности синхронизации, – как можно более точное измерение устройствами момента времени, в который осуществляется передача сообщения, и момента времени, когда осуществляется прием сообщения. Измерение должно производится максимально близко к аппаратной части (например, непосредственно в драйвере) и с максимально возможной точностью. В реализациях исключительно на программном уровне архитектура и производительность системы непосредственно ограничивают максимально допустимую точность.

    При использовании дополнительной поддержки аппаратного обеспечения для присвоения меток времени, точность может быть значительным образом повышена и может быть обеспечена ее виртуальная независимость от программного обеспечения. Для этого необходимо использование дополнительной логики, которая может быть реализована в программируемой логической интегральной схеме или специализированной для решения конкретной задачи интегральной схеме на сетевом входе.

    РЕЗУЛЬТАТЫ

    Компания Hirschmann – один из первых производителей, реализовавших протокол PTP и оптимизировавших его использование. Компанией был разработан стек, максимально эффективно реализующий протокол, а также чип (программируемая интегральная логическая схема), который обеспечивает высокую точность проводимых замеров.

    В системе, в которой несколько обычных часов объединены через Ethernet-коммутатор с функцией граничных часов, была достигнута предельная погрешность +/- 60 нс при практически полной независимости от загрузки сети и загрузки процессора. Также компанией была протестирована система, состоящая из 30 каскадно-соединенных коммутаторов, обладающих функцией поддержки т.н. прозрачных часов и были зафиксированы  погрешности менее в пределах +/- 200 нс.

    Компания Hirschmann Automation and Control реализовала протоколы PTP версии 1 и версии 2 в промышленных коммутаторах серии MICE, а также в серии монтируемых на стойку коммутаторов MACH100.

    ВЫВОДЫ

    Протокол PTP во многих областях уже доказал эффективность своего применения. Можно быть уверенным, что он получит более широкое распространение в течение следующих лет и что многие решения при его использовании смогут быть реализованы более просто и эффективно чем при использовании других технологий.

    [ Источник]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > синхронизация времени

См. также в других словарях:

  • ФУНКЦИИ НАЛОГОВ — (англ. tax functions) – устойчивые внутренние свойства, закономерности развития и отличительные формы проявления, позволяющие выявить внутреннее содержание и назначение налогов. В современной экономич. лит ре нет единообразия в их трактовке, что… …   Финансово-кредитный энциклопедический словарь

  • Функции Минпромнауки РФ —   в соответствии с п. 5 Постановления Правительства Российской Федерации от 26 октября 2000 г. № 812 «Об утверждении положения о Министерстве промышленности, науки и технологий Российской Федерации» (в ред. Постановления Правительства РФ от 09.07 …   Толковый словарь «Инновационная деятельность». Термины инновационного менеджмента и смежных областей

  • снижение температуры тела — мед. Температуры тела понижение (т.е. температура тела ниже 36 °С) иногда наблюдается у здоровых людей в утренние часы, но и в это время она не бывает обычно ниже 35,6 °С. Утреннее температурное понижение до значений 35,6 35,9 °С нередко… …   Универсальный дополнительный практический толковый словарь И. Мостицкого

  • ООН. ОСНОВНЫЕ ФУНКЦИИ — ООН считает своей задачей поддержание международного мира и безопасности. РАЗРЕШЕНИЕ КРИЗИСНЫХ СИТУАЦИЙ На протяжении своей истории ООН удавалось предпринимать эффективные меры по предотвращению серьезных угроз миру. 1947. Военнослужащие ООН в… …   Энциклопедия Кольера

  • ГОСТ 12.1.037-82: Система стандартов безопасности труда. Экспертиза трудоспособности летного и диспетчерского состава. Методы оценки слуховой функции — Терминология ГОСТ 12.1.037 82: Система стандартов безопасности труда. Экспертиза трудоспособности летного и диспетчерского состава. Методы оценки слуховой функции оригинал документа: 3.    Акуметрия 4.    Бинауральный слух о. «Белый» шум… …   Словарь-справочник терминов нормативно-технической документации

  • ОБЩЕСТВЕННЫЕ ФУНКЦИИ ПСИХОТЕРАПИИ —         Роль психотерапии в современном обществе велика, но неоднозначна. С одной стороны, она оказывает стабилизирующее влияние на общественную жизнь в целом, с другой непрерывно формирует свободные от общественного давления взгляды, касающиеся… …   Психотерапевтическая энциклопедия

  • Атрофия — Снижение функции и уменьшение массы и объема органа или ткани, связанное с длительным неактивным состоянием, снижением кровоснабжения, нарушением связи органа с ЦНС и др. В основе А. лежат снижение активности ДНК в ткани, ведущее к подавлению… …   Адаптивная физическая культура. Краткий энциклопедический словарь

  • Нолипрел — Действующее вещество ›› Периндоприл* + Индапамид* (Perindopril* + Indapamide*) Латинское название Noliprel АТХ: ›› C09BA04 Периндоприл в комбинации с диуретиками Фармакологическая группа: Ингибиторы АПФ в комбинациях Нозологическая классификация… …   Словарь медицинских препаратов

  • Нолипрел форте — Действующее вещество ›› Периндоприл* + Индапамид* (Perindopril* + Indapamide*) Латинское название Noliprel forte АТХ: ›› C09BA04 Периндоприл в комбинации с диуретиками Фармакологическая группа: Ингибиторы АПФ в комбинациях Нозологическая… …   Словарь медицинских препаратов

  • Авандамет — Действующее вещество ›› Метформин* + Росиглитазон* (Metformin* + Rosiglitazone*) Латинское название Avandamet АТХ: ›› A10BD03 Метформин+Росиглитазон Фармакологическая группа: Гипогликемические синтетические и другие средства в комбинациях… …   Словарь медицинских препаратов

  • Аккузид — Действующее вещество ›› Гидрохлоротиазид* + Хинаприл* (Hydrochlorothiazide* + Quinapril*) Латинское название Accuzide АТХ: ›› C09BA06 Хинаприл в комбинации с диуретиками Фармакологическая группа: Ингибиторы АПФ в комбинациях Нозологическая… …   Словарь медицинских препаратов

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»